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A direct Monte Carlo method for estimating the chemical potential in the petit canonical 
ensemble was applied to the simple cubic Ising-like lattice gas. The method is based on a 
simple relationship between the chemical potential and the potential energy distribution in 
a lattice gas at equilibrium as derived independently by Widom, and Jackson and Klein. 
Results are presented here for the chemical potential at various compositions and tem- 
peratures above and below the zero field ferromagnetic and antiferromagnetic critical 
points. The same lattice gas model was reconstructed in the form of a restricted grand 
canonical ensemble and results at several temperatures were compared with those from the 
petit canonical ensemble. The agreement was excellent in these cases. 

1. INTR~DUC-~I~N 

Recently, the Monte Carlo (MC) method has been applied to diffusion and ionic 
conductivity in highly disordered solids such as the superionic conductors, inter- 
stitial solid solutions, etc. [l-3]. These calculations have been couched in the form of 
the lattice gas model which seems to hold significant promise in accounting for the 
configurational components of the cooperative mechanisms of transport. Within 
this context it is convenient to study lattice gas models with a constant number of 
particles on a fixed number of sites at a constant thermodynamic temperature, i.e., 
the petit canonical ensemble. One drawback with this ensemble, however, has been 
the lack of a direct method for calculating equilibrium properties of interest, such as 
the chemical potential, p. For the nearest neighbor interacting lattice gas it has been 
possible to estimate the partition function as a function of the number of particles. 
One can then differentiate numerically to obtain p [4]. But such an estimate of the 
partition function is often poorly behaved and may even fail to converge for large 
volumes. Alternatively, of course, the &omposition isotherms could be calculated 
from the grand canonical ensemble [5]. 

Recently, however, Baker [6] pointed out the applicability, for petit ensemble MC 
calculations, of the simple relationship between the chemical potential and the poten- 
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tial energy distribution in the lattice gas at equilibrium, as derived some years ago 
by Widom [7] and Jackson and Klein [8]. The possible MC use of this relationship was 
also suggested by Chesnut [9]. 

Since the relationship is not well known, at least in MC form, we describe it in 
some detail in the present paper. This is followed by the presentation of results for 
p/composition isotherms in the simple cubic Ising-like lattice gas at various tempera- 
tures above and below both the ferromagnetic and antiferromagnetic zero field critical 
points. Results for &omposition isotherms from MC calculations in the grand 
ensemble are then presented at several of the same temperatures and compared with 
petit ensemble results. 

2. THEORY AND METHOD OF COMPUTATION 

Consider a lattice of B sites on which are distributed N interacting but indistinguish- 
able particles. Occupancy of any site by more than one particle is excluded. We write 
for the configurational partition function in the petit canonical ensemble: 

QOY B, T> = & c exp[-/WY @I, 
(all Ltes 

for N particles) 

(1) 

where Ei is the total configurational energy for the lattice gas in statej and ,6 = (kT)-1. 
If we note that the free energy is given by: 

A(N, B, T) = -p-l In Q(N, B, T), 

and that the chemical potential is defined by: 

(2) 

then ,X can be written in the following finite-difference form: 

P = $?o - 8-l WQ(N + 1, B, OIQW, B, T)]. (4) 

We substitute Eq. (1) into Eq. (4) and remove the limit notation for finite N: 

%I (all states for Ntl particles) 
p = -fl-’ In 1 (N + 1) x. 

-pi--B&(N + 1, WI 
1 3 (allstatesfor Npartlcles) exp[-PW% @I * (5) 

If we define A& as the change in the configurational energy Ej on addition of the 
N + 1 particle to the system of N particles in state j and if we note that B new states 
are thereby added to the old state sum, Eq. (5) becomes: 

I* - -p-lln 1 
B cj (all states for N partlcled exp[---BEAN, @I exp(--B 4) 

(N+ ‘)z. 
3 MI stateeforNparticle8) exp[-PMN, @I 1 ’ ‘6) 



THERMODYNAMICS OF THE LATTICE GAS 239 

i.e., 

where ( ) denotes the ensemble average. 
The quantity exp(-/l LL!&) may be interpreted in the following way [7]. Consider a 

lattice gas at thermodynamic equilibrium but frozen in a given configuration j 
characteristic of equilibrium. Now let us attempt to add to the system another 
particle, identical to those already present, and imagine placing it at each of the 
B lattice points and thus measuring the hypothetical energy of interaction, 5, with the 
existing particles. Assigning thus equal weight to each lattice site we write: 

exp(-p dEj) = B-l t exp(-/3&), 
i=l 

(8) 

where li is the energy required to place a particle at site i. This energy may be positive 
or negative. 

To evaluate the ensemble average the well-known “importance sampling” procedure 
of Metropolis et al. [IO] may be used to generate a Markov chain of states, q1 , 

. . . qM , in which the relative frequencies of states in the limit are weighted in a 
toltzmann fashion. Noting Eq. (8) we write for Eq. (7): 

It is worth noting that in the case of athermal interactions (hard molecules) one can 
write for Eq. (9): 

where Z, is the mean number of sites excluded by a particle (not including the site 
occupied) in a given configuration characteristic of equilibrium. 

In the case of a lattice gas with “soft” nearest neighbor interactions of strength E 
(we define E < 0 for attraction and 6 > 0 for repulsion) we can also write for Eq. (9) 
[71: 

where f,. (r = 0, 1, 2 ,..., C) is the probability that, with the lattice gas at equilibrium, 
and, in a given configuration, an unoccupied site is surrounded by exactly r occupied 
sites and C is the lattice coordination. 

In the present study we have used the above method leading to Eq. (9) in order to 
calculate the lattice gas chemical potential in a simple cubic lattice of 4096 sites with 
periodic boundaries and nearest neighbor interactions. To generate the Markov chain 
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in the petit ensemble we applied the well-known method of Metropolis et al. [lo]: 
the total configurational energy ,?Z1 of the system is calculated. A particle is randomly 
selected and displaced to another site which has been randomly selected from all 
sites in the lattice. The configurational energy is recalculated; let this be Eg . If the 
energy has decreased (i.e., E, < E1) then the new state is accepted. If the energy 
has increased, the probability of acceptance, p = exp[-/3(& - E,)], is calculated; 
a random number, R, is generated, uniform on the interval (0, I], and the new state is 
accepted only if R is less than p. The configurational energy of state q is calculated 
from the pairwise sum: 

Since we may expect a dependence of p on the size of N we also recast the problem 
in the form of a grand canonical ensemble. The configurational partition function in 
the grand canonical ensemble can be written as: 

&A B, T) = 2 exp@Np) $ z exp[-fiE,(N, B)] 
N=O * 3 

ml1 states 
forNparticle8) 

The probability that the system has exactly N particles, irrespective of energy, is given 
by: 

P(N) = Q(% B3 T) exp@Nd 
Q, B, 7-1 ’ 

and the ensemble average particle number (N) is given by: 

(Nj = f P(N,) N, . 
i=l 

(1% 

The method we used to construct the Markov chain is identical to that described in 
detail by Chesnut and Salsburg [5]. The weight assigned to each state 4 in the system 
is: 

u, = exp(--BUn>, (16) 
where 

where E, is given by Eq. (12). 

u, = (E, - N,t4 (17) 

An initial state is obtained by placing an arbitrary number of particles in the lattice. 
Each additional state is generated in the following way. A site is selected at random 
and an “occupant” i.e., particle or vacancy is also selected at random. If the selected 
site happens to have the same “occupant” as generated, the next state would be 
identical to the old state. Otherwise the quantity p(Uz - U,) is computed where U, 
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refers to the new state and U, refers to the old state. If lJ, < U, then the new state is 
accepted (this will involve either removal of a particle or addition of a particle to the 
system. If U, > U, , the ratio, u.Ju, , is calculated and compared with a random 
number R uniform on the interval (0, 11. The new state is accepted only if R is less 
than uz/ul . 

These calculations were performed on an IBM 370/195 computer at Argonne 
National Laboratory. 

3. RESULTS 

The equilibrium flp/particle density isotherms calculated from the petit ensemble 
for p (= exp[-+]) from 0.32 to 2.70 are displayed in Fig. 1. The solid lines represent 
the best visual fit through the individual petit ensemble data points (not shown for 
clarity) which were mainly gathered at intervals of 0.01 in particle density, p (3 N/B). 
Each data point represented an average over 2 x lo5 configurations once the config- 
urational energy had converged, usually within 5 x lo4 cotigurations. However, 
below the critical temperatures, convergence would usually require greater than IO6 
configurations. 

FIG. 1. The chemical potential as a function of density at various values of P: -, best visual 
fit of data from the petit ensemble; 0, data points from the grand ensemble; - - -, plot of Eq. (22). 

58112912-7 
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The broken curve in Fig. 1, i.e., F = 1 .O is the result of a purely random distribu- 
tion, i.e., 

BP w - MB - W(N + 91 
m W/U - ~11. 

(18) 

Historically Eq. (18) is the three-dimensional analog of the Langmuir adsorption 
isotherm. 

The grand ensemble results are displayed in Fig. 1 as open circles for T = 0.6 and 
1.4. The mean value of the particle number (N) was also averaged over 2 x lo5 
configurations once convergence had been achieved, usually within less than 15 x 10S 
configurations. The difference in the convergence rate between the two ensembles 
illustrates the fact that the grand ensemble approaches equilibrium exponentially 
fast whereas the petit ensemble does not. 

There is excellent agreement between the results of the two ensembles, thus establish- 
ing that the finite-difference method for calculating /3~ is a reliable and useful proce- 
dure for MC calculations in the lattice gas at a constant particle density. The internal 
consistency of the isotherms was tested using the following symmetry relation which 
is valid for the nearest neighbor interacting simple cubic lattice gas with periodic 
boundaries in the petit canonical ensemble [4]: 

,$(B - N, B, T) = +(N - 1, B, T) + 6/S. (19) 

The petit ensemble results satisfied this relation to within a standard deviation as 
determined from the Markov chain. It was assumed that averages over successive 
groups of 10,000 configurations are uncorrelated. 

Detailed &/p results from both ensembles are available on request from the authors. 

4. DISCUSSION 

The lattice gas in which the particles attract (F > 1.0) has frequently been studied 
as a model for the liquid/gas transition. Thus the temperature evolution of the iso- 
therms here displays the usual condensation behavior into two phases-one a gas-like 
phase, the other, a liquid-like phase. The critical temperature has been accurately 
determined at p = 0.5 by high temperature series expansion [12]. p, was shown to be 
2.43 which implies that the lowest isotherm but one in Fig. 1 is very nearly the critical 
isotherm. But it is not possible to verify this directly from the isotherm because of the 
uncertainty in slope. The lowest isotherm in Fig. 1 must inevitably cut the diphasic 
region. This isotherm exhibits no pseudo van der Waals loop, indicative of very small 
B [ll]. This is not surprising since other studies, for example, see [SJ, have indicated 
that the present lattice of 4096 sites exhibits infinite system behavior. It is worth 
noting, however, that the present method for calculating /3~ would seem to be useful 
for tracing the evolution of the shape of the loop at very small B. 

The lattice gas in which particles repel (T < 1.0) has been used as a model for 
solidification [13] and adsorption [14]. Important recent applications have been in the 
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area of superionic conductivity (see, for example, [15]). In lattices other than the 
“triangular” ones, interparticle repulsion produces specifically an ordered phase in 
which particles occupy alternate sites and which has a zero entropy at the absolute 
zero of temperature. The ordered phase is symmetrically centered around p = 0.5. 
The critical temperature occurs at about Tc = 0.412 [12]. The simulated isotherm at 
this temperature exhibits a very slight inflection at p = 0.5. The highest isotherm in 
Fig. 1, i.e., at p = 0.32 must cut through the ordered region. This isotherm exhibits 
apparently horizontal inflections at p = 0.37 and, of course, at p = 0.63. The first 
inflection may be interpreted as a continuous second order transition from the dis- 
ordered “phase” to the ordered “phase”. The second inflection may be interpreted 
similarly as a second order transition but from the ordered “phase” to the disordered 
“phase”. 

Comparison of these latter results with Ising theory can best be done in a magnetic 
language. In what is by now regarded as a classic paper, Lee and Yang [16] showed 
that the lattice gas is an analog of the Ising model. One associates a spin up t with, 
say, an occupied site and a spin down 1 with an unoccupied site. Since the Ising system 
is “open” with respect to magnetic spins, one can conveniently express the set of all 
possible spin values of B sites in terms of the isothermal/isobaric ensemble. This 
ensemble for the Ising problem is formally equivalent to the grand ensemble for the 
lattice gas in the restricted sense of Eq. (13). The role of the chemical potential for the 
lattice gas is taken by the magnetic field per spin H, and, for our definition of E the 
equivalence is: 

-2H e-+/l - 3E. (20) 

Using a high temperature series expansion, Bienenstock [17] determined the 
paramagnetic/antiferromagnetic boundary as a function of applied field in the simple 
cubic Ising magnet. This is, of course, equivalent to determining the order/disorder 
boundary in the lattice gas as a function of chemical potential. Bienenstock found 
that for T/T, = 0.779 where T, is the critical temperature in zero field (i.e., at a 
composition p = 0.5 in the lattice gas), H/H, = 0.697 where H, is the critical field 
(= -6J) at T = 0. At this field all the antiparallel spins turn into the direction of the 
field. J is the isotropic coupling between neighboring spins (4J E -e) and H is the 
magnetic field required to destroy the antiferromagnetic order at the given temperature 
T. For the same value of T/T, (assuming that T, as given by Bienenstock is “exact”) 
the Monte Carlo results give H/H, = 0.785 f 0.012 which is in only fair agreement 
with Bienenstock’s value. Bienenstock has indicated, however, that the Pade approxi- 
mants to the high temperature series expansion may not adequately represent the 
properties of the Ising system at large deviations from p = 0.5. 

5. SUMMARY 

A Monte Carlo method was used to calculate the chemical potential of the simple 
cubic lattice gas in the petit ensemble. Both nearest neighbor particle attraction and 
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repulsion were examined. Petit ensemble results were in excellent agreement with 
those calculated from the grand ensemble at two temperatures. In addition, all petit 
ensemble results satisfied a basic symmetry relation. The value of the chemical poten- 
tial required to destroy the long range order on the repulsion side at F = 0.32 was in 
fair agreement with the series expansion results of Bienenstock. 
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